Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification
نویسندگان
چکیده
The worldwide demand for food has been increasing due to the rapidly growing global population, and agricultural lands have increased in extent to produce more food crops. The pattern of cropland varies among different regions depending on the traditional knowledge of farmers and availability of uncultivated land. Satellite images can be used to map cropland in open areas but have limitations for detecting undergrowth inside forests. Classification results are often biased and need to be supplemented with field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed percentage cover of land use/land cover classes, and topographic and location parameters. The most influential factors were identified using Boosted Regression Trees and used to map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements, and distance to national park were found to be the most influential factors determining undercover cropland area. When there is very high demand for growing food crops, constrained under restricted rights for clearing forest, cultivation could take place within forests as an undercover. Further research on the impact of undercover cropland on ecosystem services and challenges in sustainable management is thus essential.
منابع مشابه
Correction: Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification
There are errors in the first paragraph of the " Predicted undercover cropland " section of the Results. " Hectares per pixel " should read " m 2 per pixel. " There are errors in Fig 4 and in its caption. Please see the complete, correct Fig 4 here. There are errors in the caption for S5 Fig. Please view the correct S5 Fig. caption below. Copyright: © 2015 Ayanu et al. This is an open access ar...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملLand use changes analysis and prediction using remote sensing and QGIS MOLUSCE Plugin in the Siahkal County
Quantifying land use change dynamics is critical in tackling environmental and socio-economic challenges such as climate change in recent years. This study takes Siahkal County in Guilan Province as the research subject and analyzes the land use changes in two different years: 2000 and 2021, and predicts the change in 2031. We carried out land use change analysis using LANDSAT-7 ETM+ and LANDSA...
متن کاملUsing Post-Classification Enhancement in Improving the Classification of Land Use/Cover of Arid Region (A Case Study in Pishkouh Watershed, Center of Iran)
Classifying remote sensing imageries to obtain reliable and accurate LandUse/Cover (LUC) information still remains a challenge that depends on many factors suchas complexity of landscape especially in arid region. The aim of this paper is to extractreliable LUC information from Land sat imageries of the Pishkouh watershed of centralarid region, Iran. The classical Maximum Likelihood Classifier ...
متن کامل